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This mosaic is based on data observations from the Moderate Resolution Imaging Spectroradiometer (MODIS)
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DataFrame
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myfirstdataframe = pd.DataFrame({"Hera": ["SpiderMan®, "Wonder wWoman'', “Tron Mar"], "Hair':["Brown*, "Elond

displayinyfirstdatafrase)

[ Hero| Hair
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2 Iron Man |Black |

Of course, erntries can be either strings, niegers, floats...



Lecture 2

Classification techniques are an essential part of machine
learning and data mining applications.

Approximately 70% of problems in Data Science are
classification problems.
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Lecture 2

Lecture 2.1 Machine learning
Lecture 2.2 Clustering and the like
Lecture 2.3 Deep Learning with neural networks
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Learning to perform a Task from Experience (like humans, animals) with a
performance measure
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Learning to perform a Task from Experience (like humans, animals) with a
performance measure

Modelling the function that best represents the relationship between input
data xi and outputs yi, i.e. a model of the data
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Learning to perform a Task from Experience (like humans, animals) with a
performance measure

Modelling the function that best represents the relationship between input
data xi and outputs yi, i.e. a model of the data

e Prediction (task): x;=features, y,=output function (continueous, regression)

e (Classify (task): x,=features, y.=output classes (discrete, categories)
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Learning to perform a Task from Experience (like humans, animals) with a
performance measure

Modelling the function that best represents the relationship between input
data xi and outputs yi, i.e. a model of the data

e Prediction (task): x;=features, y,=output function (continueous, regression)

e (Classify (task): x,=features, y.=output classes (discrete, categories)

Two techniques: supervised or unsupervised

Several algorithms = methods to model

How much better? A cost function and an optimization algorithm ("best")

15



Prediction

“La prevision est difficile surtout lorsqu'elle concerne l'avenir.”
Pierre Dac
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne 'avenir.”
Pierre Dac

In general, we would like to predict a t-value from an observation x

= y(x,w)
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne 'avenir.”
Pierre Dac

In general, we would like to predict a t-value from an observation x

= y(x,w)

If tis continuous: Regression = Lecture 1
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne 'avenir.”
Pierre Dac

In general, we would like to predict a t-value from an observation x

= y(x,w)

If tis continuous: Regression V Lecture 1

If tis discrete : Classification = Lecture 2

{Machine} Learning of parameters w from observation x

19
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Supervises classification Labeled features




Learning and generalization

Learning to classify data is like learning a function.
of decision: the boundary between classes.

Feature space
>

22



Learning and generalization

Learning to classify data is like learning a function.
of decision: the boundary between classes.

Feature space
>
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Learning and generalization

Learning to classify data is like learning a function.
of decision: the boundary between classes.

Linear

Feature space
>

24



Learning and generalization

Learning to classify data is like learning a function.
of decision: the boundary between classes.

Quadratic

Feature space
>
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Learning and generalization

Learning to classify data is like learning a function.
of decision: the boundary between classes.

Decision tree

Feature space
>
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Learning and generalization

The complexity of a decision function depends on the complexity of the
grouping of labels in the characteristics space (i.e. feature space)

Feature space Non binary and non linear
g classifier

= Object's characteristics to identify which class it belongs

27
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Outline

l. Introduction to ML
- Generic ML workflow

Il. Linear classifier
- Discriminative model,
example of Logistic Reg.
- Generative model,
example from LDA and Bayesian

ll1l.Generalization

- Non-linear classifier
- Fitting problem
- Regularisation
- Cross-validation
- A word on performance and score

IV. Clustering

32



Workflow of supervised ML process

T'?i r;(itng features
e
Documents, veciors
Images,
Sounds... ‘ -

Machine

Leaming
Algorithm accuracy

Labels .
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Workflow of supervised ML process

Training
Text
Documents,
Images,
Sounds...

Labels

Document,

New
Text

Image,
Sound

features
vectors

AN

T

features

@ vector Q

Machine

Leaming
Algorithm

Predictive
Model

34
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Linear classifier

linear function that assigns a score to each possible category k
score(X;, k) = P, - X,

Discriminative model

Attempts to maximize the quality of the output on
a training set.

e.g., Logistic regression XA2
°q
Generative model °0 o
o_o
Try to model the conditional probability .‘. o
distribution of Y given X is the probability ®
distribution of when is known to be a particular °® 0
value; o 00
0
e.g., Linear Discriminant Analysis (LDA) ®

= Discriminative training often yields higher accuracy

= Conditional density models is more suited when handling missing data
35
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K nearest neighbour

The simplest one

New data to classify

/),

O ® 0
O 00 0 o
®e “‘.
o0 O
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":' o:‘t
“.‘Q‘.‘ “
® ° ".0‘
O
® O O
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K nearest neighbour

We assign the class of the closest point in the Xn feature space by
computing the euclidian distance

O
The simplest one f O
o 00 90 o
O O ® 0
O
®e®e %o 0 e
O o0 O O O
AN Y o
X ® 099 o0
O O O O
o®_o ® o0

®
¢ 0o 003 ¢
» X1 “ ‘.
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K nearest neighbour

We assign the class of the closest point in the Xn feature space by
computing the euclidian distance

® o
The simplest one O 0
“ ““ O
O O ® 0
o o ®
®e®0 %o oo,
O
..C‘. C.‘ O ...“Q
® 009 4,0 ° O
® 09 o0
X2 O
. ® 90%0 ®
O O
o®_o O

O o
o oy o‘o. ®
» X1 O ‘.
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Logistic regression

Special case of the linear regression

y=pyt+ /X i+ X+ ...+ )X,

Where, y is dependent variable and X1, X2 ... and X, are explanatory variables.

Sigmoid function is: . S

1
(x) = W
4 1 + e

Lo | {3 | |

-6 -4 =2 0 2 4

When applying sigmoid function on linear regression:

1
Jx) = 1 4+ e—(bothiXi+pXo+.. . +0,X,)

J(x) = 1

+ eV

40



14 —— . 1

12

08 - / .

X o

Linear regression » continuous output
Logistic regression » discrete output

Linear regression is estimated using Ordinary Least Squares (OLS), see slides from lecture 1
while logistic regression is estimated using Maximum Likelihood Estimation (MLE) approach.

Note that when the errors are normally distributed, OLS is the maximum likelihood estimator.

41



Take away definition

Maximum Likelihood Estimation Vs. Least Square Method

The MLE is a ‘likelihood" maximization method, while OLS is a distance-
minimizing approximation method. Maximizing the likelihood function
determines the parameters that are most likely to produce the observed data. From
a statistical point of view, MLE sets the mean and variance as parameters In
determining the specific parametric values for a given model. This set of
parameters can be used for predicting the data needed in a normal distribution.

Ordinary Least squares estimates are computed by fitting a regression line on
given data points that has the minimum sum of the squared deviations (least
square error).

Both are used to estimate the parameters of a linear regression model.

MLE assumes a joint probability mass function, while OLS doesn't require any
stochastic assumptions for minimizing distance.

42



Take away message

Bimodal logistic regression is the entry to machine learning

K-classe logistic regression is the entry to deep learning,
We will go back to this during the second part of this lecture with Greg.

y1 ()

ey
w(®D
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Generative model Linear Discriminant Analysis (LDA)
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Generative model Linear Discriminant Analysis (LDA)

X2
A
[ J
.....
| ® o
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® o
SN
. - X1
< - = =0 D

X1
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Generative model Linear Discriminant Analysis (LDA)

We search for a function that minimises the variances and maximises the distance btw
the means of the two classes

LD1

46



Generative model Linear Discriminant Analysis (LDA)

Compute the within class and between class scatter matrices
Compute the eigenvectors and eigenvalues for the scatter matrices
Sort the eigenvalues and select the top k

Create a new matrix containing eigenvectors that map to
the k eigenvalues

Obtain the new features (i.e. LDA components) by taking the dot
product of the data and the matrix from step 4

47



Generative model Linear Discriminant Analysis (LDA)

Scatter Matrix :

A scatter matrix is an estimation of covariance matrix when covariance
cannot be calculated or costly to calculate. The scatter matrix is also used in
lot of dimensionality reduction exercises. If there are k variables, scatter
matrix will have k rows and k columns (i.e k x k matrix).

The scatter matrix is obtained from:

S = 2 (x, — m)(x, — m)”
k=1

with m being the mean vector:

1 n
m=ryx
k=1

48



Generative model Linear Discriminant Analysis (LDA)
Within Class Scatter Matrix

We calculate the within class scatter matrix using the following formula.

where c is the total number of distinct classes and

Si = Zn: (x —m;) (x—m;)"

xeD,

where x is a sample (i.e. row) and n is the total number of samples with a

given class.

49



Generative model Linear Discriminant Analysis (LDA)

In Python we do it this way (if/when using Panda)

class_feature_means = pd.DataFrame(columns=data.target_names)
for ¢, rows in df.groupby('class'):

class_feature_means|[c] = rows.mean()
class_feature_means

|

B

within_class_scatter_matrix = np.zeros((13,13))
for ¢, rows in df.groupby('class'):
rows = rows.drop(['class'], axis=1)

s = np.zeros((13,13))
for index, row in rows.iterrows():
X, mc = row.values.reshape(13,1), class_feature_means[c].values.reshape(13,1)

s += (x = mc).dot((x - mc).T)

within_class_scatter_matrix += s

O O R I I =

50



Between Class Scatter Matrix

Next, we calculate the between class scatter matrix using the following
formula.

Sp = Z Ni(m; — m)(m; — m)"

i=1

where

l n
m = — T
23
feature_means = df.mean()

between_class_scatter_matrix = np.zeros((13,13))
for ¢ in class_feature_means:

n = len(df.loc[df['class'] == c].index)

mc, m = class_feature_means|[c].values.reshape(13,1), feature_means.values.reshape(13,1)

between class_scatter matrix += n *x (mc — m).dot((mc — m).T)
51




Then, we solve the generalized eigenvalue problem for

_— S S T~

Sw : within class St : between classes
to obtain the linear discriminants.

eigen_values, eigen_vectors =
np.linalg.eig(np.linalg.inv(within_class_scatter_matrix).dot(between_class_scatter_matrix))

The eigenvectors with the highest eigenvalues carry the most information
about the distribution of the data. Thus, we sort the eigenvalues from highest to

lowest and select the first k eigenvectors. In order to ensure that the eigenvalue maps to
the same eigenvector after sorting, we place them in a temporary array.

pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]l) for i in range(len(eigen_values))]
pairs = sorted(pairs, key=lambda x: x[@], reverse=True)
for pair in pairs:

print(pair[@])

eigen_value_sums = sum(eigen_values)
print('Explained Variance')
for i, pair in enumerate(pairs):
print('Eigenvector {}: {}'.format(i, (pair[0@]/eigen_value_sums).real))

|

AR I I I —>777Zrrmm,
52




So, bottom line is....

From lecture #1:

PCA selects the components which would result in the highest spread
(retain the most information) and not necessarily the ones which maximize
the separation between classes.
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Generative model A word on probabilistic classifier (Bayes)

Suppose a problem of classification into two classes C1 and C2 and from 1D data
modelled bv a random variable x (Observation)

5
1.2 '
p(:r|C2) p(Ci|z) p(C2lz)
4t . 1
0.8}
3 L
0.6
2t . 04|
p(z/C1) p(C1)=0.3
N 02 p(C2) = 0.7
0 .
0 0.2 0.4 0.6 0.8 1
0 . .
0 0.2 0.4 0.6 0.8 1
[C. Bishop, Pattern recognition and Machine learning, 2006] 1 To T
Likelihood A priori E
4C3199(%
p(x) ,
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Non-linear cases
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Non-linear cases

1 w
h e oy :\
o o b
e
®2
0.5} s,
i
s
e *o )
¥
. k5
0t
-1 0 > 3 0 0.5 1 |

Remember, like the non-linear regression (see lecture 1)
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Support Vector Classifier

X2 Support vectors= sample features on the margin M

M
Y=wXx+b

Margin M= Minimal distance between hyperplane and observations
Optimal Hyperplane = with the maximal margin, the thicker layer
that can be slipped

-> This can be applied to non-linear function as well
o7



Support Vector Classifier

What if the problem is not linear?

58



Support Vector Classifier

What if the problem is not linear?

X2 +Y2=1
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Support Vector Classifier

° : What if the problem is not linear?
00 o ®o_o
o % 90 "¢
® : K
‘9g® 0@
0%% e . o® X2+ Y2=1 !
o o ®: o y
R polar coordinate system
°q
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Classifier Zoo
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Home Installation Documentation - Examples

scikit-learn

Machine Learning in Python

hg®

Classification

Identifying 1o which calegory an object
belongs to.
: Spam detection, Image

on
SVM, nearest neighbors,

rancom forest, ... Erampios

Dimensionality reduction

Reducing the number of random varabdles to
consicer.

lons: Visualization, Increased
iciency
Algorithms “CA_ feature selection, non-

regative matnx laciorzation, Examplos

News
On-going development: What's now

(Changeloq)

Regression

Predicting a comtinuous-valuad attribute
associated with an abject.

Applications: Drug response, Slock prices.
Algorithms: SV, ridge regression, Lasso,

Examplos

Model selection

Comparing, validating and choasing
parameters and models.

Goal: Improved accuracy via parameter
wning

Modules: grici saarch, cross validation,
mewics, Exampios

Community
About us Seo aulho's and conlributing

L) .e "e . L [ .

Clustering

Avtomatic grouping of similar objects into
sots

Applications: Cusiomer segmentation,

Grouping experment outcomes

Algorithms . k-Means, speciral clustenng,

mean-shift, . Exarmypan

Preprocessing

Feature extraction and normalzation,

Application: Tr input data such as

text lor use with machine algorithms

Modules: preprocessing, feature extraction.
Exampes

Who uses scikitdearn?

-
Vs -

‘—————-——-nmr—
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Fitting problem

e.g., N degree polynomial regression

N
(X, W) = wy + wix + w2x2 + ...+ WNSN = Z wjxj
J=0

Least squares of errors

11
E(w) =— X ,W)— 2
(W) zg,y(n ) -,
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Fitting problem

Evaluation of model prediction over the data

N=0 E=7.5946
°
°
2 . 2
> 1 > 1
0.\
0 00. e 0
-1 -1
1 2 3 4
X
N=3 E=0.021144
3 3
2 2
> 1 > 1
0 0
-1 L - : -1
1 2 3 4

N

— 2 N _ j

Y, W) = wy+wix + wox®+ ..o+ wysT = ijx
J=0

1 1
Ew) =— >y, W) =/
i=1
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N=2 E=0.23623 .

N=9 E=0.0060719




Fitting problem

Which one is the best?

N=0 E=7.5946 N=2 E=0.23623
3 . . ® . 3 " v o
=
e
2 o 2
> 1 > 1
ﬁ.\
0 ol Y 0 — °
-1 1
1 2 3 4 1 2 3
X X
9 N=3 E=0.021144 " N=9 E=0.0060719
2 2
> 1 > 1
0 0
1 ................ 1
1 2 3 4 1 2 3
X X

N
Y, W) = Wy + wix + wox? + ..+ wysY = ijxf

1 1
Ew) =— >y, W) =/
i=1
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Fitting problem

The least square errors is not a good criteria for
evaluating the model prediction ability

N=0 ERMS=36.1579

N=2 E=18.3243
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Fitting problem

The overfitting problem can be overcome by adding data into the training set
=> Big Datal!!!

Or we provide a priori knowledge

| N=9 E=20§195.2358 | N=9 E=43.478 .7 =| ") &) © (]

4 . 3.5 - .
® Training set (= 13) | »| @ Training set (=100)

1fg ¢ _5
of |
-1 . 4 ]
0 1 2 3 4 4
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Fitting problem

The least square errors is not a good criteria for
evaluating the model prediction ability

N=0 ERMS=36.1579

undert

70

N=2 E=18 3243

4

’ -
Y ( \g
‘“‘/

.

N=9 E=205195.2358

Y
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Fitting problem

Underfitting: Overfitting:
- Low variance and - High variance and
high bias low bias.
Error

Total Error

Optimal model complexity

Bias

Model complex}ty

An ideal model is the one with small variance and small bias.



Fitting problem

Regularization := adding penalty term

In order to create less complex (parsimonious) model when you have a large number of features in your
dataset, some of the Regularization techniques used to address over-fitting and feature selection are

L1 Regularization L2 Regularization

Lasso Regresswn Ridge Regresswn
P

Zm Z X, W ,>2+12w PHCEDIEA ,>2+AZ||w||

i=1 j=1

1t 1t o—0 InA=0
o
t t
(o}
o. O O
0t 0 ——
° o
o
_| 4 _l .
L2-Reg L2-Reg
0 . 1 0 - 1

The key difference between L1 and L2 techniques is that L1 shrinks the less important
feature’s coefficient towards zero thus, removing some feature altogether. So, this works
well for feature selection in case we have a huge number of features.
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Fitting problem

Model selection

Data splitting

Label

2 1 ..

< 3/4 Training sub data set
=

o x

8 I 1/4

Assessing the criteria

v

Testing sub data set * Evaluating the prediction

Root Mean Square of Error (RMS) —o— Training
7 —&— Tesl
E(w) = Z y(x,, W) — y;° v
i=1 ;E 0.5
Egpyis =/ EW)/(N = p)
0 0 3 6 9

p being the number of parameters (i.e., size of w)
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Test

Fitting problem

Model selection

Crossing validation

Data splitting

, —
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Test

Fitting problem

Model selection

Crossing validation

Data splitting

, —

Test

75

Data splitting

—



Test

Test

I

I

Fitting problem

Model selection

Crossing validation

Data splitting

—

Data splitting

===

Data splitting

—

Data splitting

Test

Test
—
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Performance and score

True Negatives (TN)

Nonll ©OF 3

true label

L1 1F -

0

False Positives (FP)
1
2

True Paositives (TP)
||
1

predicted label

Non L1

False Negatives (FN)

i’

L1




Performance and score

Sensitivity, recall, true positive rate

TP
TP + FN True Negatives (TN)
Specificity, true negative rate !
TN False Positives (FP)
TN + FP Nont1 O R ‘
£
Precision 3
I'N L1 1 4 2
TN + EN True Paositives (TP)
3 1
Critical Success Index predicted label
TP Non L1 L1
TP + FN + FP False Negatives (FN)

Accuracy, classification rate
TP+ TN
TP+ TN+ FP+ FN
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How to proceed ?
* Fit on learning zone

* predict on test zone and estimate performance.
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MACHINE LEARNING

" SUPERVISED
LEARNING

[ )

CLASSIFICATION

Develop predictive
model based on both
input and output data

\ J

( )
UNSUPERVISED
LEARNING

Group and interpret
data based only

\

J

REGRESSION

on input data
\, y,

80
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Clustering and the like....

Grouping : building objects collection

- sharing similar properties (in the considered feature space)

- non-sharing similar properties when not belonging to the same group

Clustering is an unsupervised classification (no predefined classes)
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Similarity (distance in the feature space)

e.g., Minkowski distance

S _ q _ q _ q
d ])_q\/qxil v [, = [t x, o [7)

where i = (X3, Xip, -+, Xi,) €8] = (X;3, X3, .., X;,) are two p-dimensional objects

with g being a positive integer
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Criteria of clustering

® Partitioning: Dividing the population, and evaluate in regard to criteria

® Hierarchical: Decomposition over criteria

® Density: Connectivity in the space feature

® Grid: multi-level of granularity

® Model-based: a priori rules driven from a given model

https://fw.ipgp.ir/rhs0024/wiki/index.php/Atelier Machine et Deep learning%2C 20 mai 2019
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https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019

Partitioning clustering

Create partition of k clusters following criteria
K-mean (MacQueen' 67) : each cluster is defined from its centroid

K-medoids (Kaufman & Rousseeuw 87) : each cluster is defined from one object
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K-means algorithm

1. Define k (humber of clusters)

2. Assigning each object O to cluster Ci with M; centroid as we minimise dist(O,M;)
3. Compute barycentre of M; for each cluster

4. Goto #2 in case of a new assignment

Strength
Efficient towards O(tkn)

n: object #
k: cluster #
t: iteration #
as k,t<<n

Weakness

Not applicable if features are not interval/ratio (see lecture #1)
k-cluster needs to be defined
Not suitable for non-convex hull
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https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019

Hierarchical clustering

We compute the distance matrix sa clustering criteria.

K is not defined but we need a stop condition.

EtapeO Etape Etape Etape Etape agglomerative
| 1 . 3 4 > (AGNES)

divisive
| | | |
tape Etape Etape Etape Etape (DIANA)

|
E
4 3 2 1 0
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Density clustering

Dense cloud vs parse areas (i.e., noise)

Two parameters
Eps: neighbours maximum radius

MinPts: Minimal number of points in the Eps neighbours radius

Veos(P):{q €D | dist(p,q) <= Eps}

p Belongs to neighbours Vesp if
— 1) p EVi,i(q) MinPts = 5
- 2) Veos (q)| >= MinPts o Q Eps=1cm

Strength
Work with non-convex hull
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~ ™~

MACHINE LEARNING

J\

/

Supervised . .
Training a model on input and output data SUPERVISED UNSUPERVISED
known exits so that he can predict the exit LEARNING LEARNING
on future entries. An a priori the data set
of learning
s N [ N 4 N
CLASSIFICATION REGRESSION CLUSTERING
= \ 4 . / \
Unsupervised - . i
. . ) . ] . Support Vector Lirear Regression, <{-Means, K-Medoids
Finding forms, an intrinsic structure in the | Machines Gl | Fuzzy C-Means
data without a priori SEEYR N ( e
p Dl;fnr::rln;:ic:nt SVR, GPR Hierarchical
o J " J/ ~
" \ [ N\ R
Naive Boyes Ensemble Methods Gaussian Mixture
. / " J/ \_ _
4 ™ ~ ™ ;-
Necrest Neighbor Decision Trees Neural Netwarks
- ~ " J/ -
Neural Networks Hidd;r:’gae?rkov
with Greg in a few N 4 I -
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Deep learning is a subfield of Machine learning aiming at data
representation.

DL algorithms attempt to learn a representation by using a hierarchy
of multiple layers (hidden layers) based on a neural network
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Machine learning is:

Data
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Machine learning is:

A 8- %-»

Data Features Classification Output
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Machine learning is:

Mg 8- %-»

Data Features Classification Output

Deep learning is:

Animal
Tree
Mountain

=)

*A-»

Data Features extraction + classification Output
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