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• 2 lectures 

• 5 labs

• 1 hackathon

Regression & Inference [4h]

Machine learning [2h]

Introduction to deep learning [2h]

Instrument calibration

    time series from ObsEra


Data inversion

    Earthquake location


Clustering from ML

3D Lidar classification


Neural network

Climatic regression

Volcanoes detection on Venus

Groups of 2-3 students hackathon 

Organigram
December

January

Earth Data Science











Classification techniques are an essential part of machine 
learning and data mining applications. 


Approximately 70% of problems in Data Science are 
classification problems.
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Lecture 2
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Sources: 

www.datacamp.com


https://machinelearningmastery.com/


towardsdatascience.com
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https://thedatafrog.com/

https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019

http://wikistat.fr/

http://perso.univ-lemans.fr/~berger/CoursTF/CoursTF

https://www.3blue1brown.com/

http://www.datacamp.com
https://machinelearningmastery.com/
http://towardsdatascience.com
https://thedatafrog.com/
https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019
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Lecture 2 

Lecture 2.1 Machine learning

Lecture 2.2 Clustering and the like

Lecture 2.3 Deep Learning with neural networks
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Learning to perform a Task from Experience (like humans, animals) with a 
performance measure
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Learning to perform a Task from Experience (like humans, animals) with a 
performance measure
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Data (features)

Function 
classification/prediction

Evaluation 
Goodness/badness 



Learning to perform a Task from Experience (like humans, animals) with a 
performance measure

Modelling the function that best represents the relationship between input 
data xi and outputs yi, i.e. a model of the data
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Learning to perform a Task from Experience (like humans, animals) with a 
performance measure

Modelling the function that best represents the relationship between input 
data xi and outputs yi, i.e. a model of the data

• Prediction (task): xi=features, yi=output function (continueous, regression) 

• Classify (task): xi=features, yi=output classes (discrete, categories)  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Learning to perform a Task from Experience (like humans, animals) with a 
performance measure

Modelling the function that best represents the relationship between input 
data xi and outputs yi, i.e. a model of the data

• Prediction (task): xi=features, yi=output function (continueous, regression) 

• Classify (task): xi=features, yi=output classes (discrete, categories)  

Two techniques: supervised or unsupervised

Several algorithms = methods to model

How much better? A cost function and an optimization algorithm ("best")
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne l’avenir.”

Pierre Dac
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne l’avenir.”

Pierre Dac

t = y(x, w)

In general, we would like to predict a t-value from an observation x
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne l’avenir.”

Pierre Dac

t = y(x, w)

If t is continuous: Regression ➡ Lecture 1

In general, we would like to predict a t-value from an observation x
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Prediction

“La prévision est difficile surtout lorsqu'elle concerne l’avenir.”

Pierre Dac

In general, we would like to predict a t-value from an observation x

t = y(x, w)

If t is continuous: 

If t is discrete : 

Regression

Classification

✓ Lecture 1

➡ Lecture 2

{Machine} Learning of parameters w from observation x 
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Snow

Gullies

Sign

Factory

Car

Trees

Fault
Kink fold

Supervises classification Labeled features
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Learning and generalization

Learning to classify data is like learning a function. 
of decision: the boundary between classes.
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Feature space



Learning and generalization

Learning to classify data is like learning a function. 
of decision: the boundary between classes.
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Feature space



Learning and generalization

Learning to classify data is like learning a function. 
of decision: the boundary between classes.

Linear
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Feature space



Learning and generalization

Learning to classify data is like learning a function. 
of decision: the boundary between classes.

Quadratic
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Feature space



Learning and generalization

Learning to classify data is like learning a function. 
of decision: the boundary between classes.

Decision tree

26

Feature space



Learning and generalization

The complexity of a decision function depends on the complexity of the 
grouping of labels in the characteristics space (i.e. feature space)

Non binary and non linear 
 classifier

➡ Object's characteristics to identify which class it belongs
27

Feature space



Unsupervised 
Finding forms, an intrinsic structure in the 
data without a priori

Supervised 
Training a model on input and output data

known exits so that he can predict the exit 
on future entries. An a priori the data set 
of learning
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Unsupervised 
Finding forms, an intrinsic structure in the 
data without a priori

Supervised 
Training a model on input and output data

known exits so that he can predict the exit 
on future entries. An a priori the data set 
of learning
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Lecture #2.1



Unsupervised 
Finding forms, an intrinsic structure in the 
data without a priori

Supervised 
Training a model on input and output data

known exits so that he can predict the exit 
on future entries. An a priori the data set 
of learning
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Lecture #2.2



Unsupervised 
Finding forms, an intrinsic structure in the 
data without a priori

Supervised 
Training a model on input and output data

known exits so that he can predict the exit 
on future entries. An a priori the data set 
of learning
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Lecture #2.3
with Greg in a few



Outline
I. Introduction to ML 
 - Generic ML workflow


II. Linear classifier 
 - Discriminative model,

       example of Logistic Reg. 
 - Generative model, 

      example from LDA and Bayesian 

III.Generalization 
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- Non-linear classifier

- Fitting problem 


- Regularisation

- Cross-validation


- A word on performance and score

IV. Clustering 



Workflow of supervised ML process
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accuracy



Workflow of supervised ML process
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accuracy



Linear classifier

score(Xi, k) = βk ⋅ Xi

 linear function that assigns a score to each possible category k 

X1

X2

Generative model

e.g., Linear Discriminant Analysis (LDA)

Try to model the conditional probability 
distribution of Y given X is the probability 
distribution of  when  is known to be a particular 
value; 

➡Discriminative training often yields higher accuracy

➡Conditional density models is more suited when handling missing data
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e.g., Logistic regression

Attempts to maximize the quality of the output on 
a training set.

Discriminative model



K nearest neighbour

The simplest one

X1

X2
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K nearest neighbour

The simplest one

X1

X2

New data to classify
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K nearest neighbour

The simplest one

X1

X2

We assign the class of the closest point in the Xn feature space  by 
computing the euclidian distance 

38



K nearest neighbour

The simplest one

X1

X2

We assign the class of the closest point in the Xn feature space  by 
computing the euclidian distance 
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Logistic regression  

Special case of the linear regression

y = β0 + β1X1 + β2X2 + … + βnXn

Where, y is dependent variable and X1, X2 ... and Xn are explanatory variables.

f(x) =
1

1 + e−λx

Sigmoid function is:

f(x) =
1

1 + e−y
f(x) =

1
1 + e−(β0+β1X1+β2X2+…+βnXn)

When applying sigmoid function on  linear regression:
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Linear regression    ▶︎ continuous output

Logistic regression ▶︎ discrete output


Linear regression is estimated using Ordinary Least Squares (OLS), see slides from lecture 1 
while logistic regression is estimated using Maximum Likelihood Estimation (MLE) approach.


Note that when the errors are normally distributed, OLS is the maximum likelihood estimator. 
41



Maximum Likelihood Estimation Vs. Least Square Method 

The MLE is a "likelihood" maximization method, while OLS is a distance-
minimizing approximation method. Maximizing the likelihood function 
determines the parameters that are most likely to produce the observed data. From 
a statistical point of view, MLE sets the mean and variance as parameters in 
determining the specific parametric values for a given model. This set of 
parameters can be used for predicting the data needed in a normal distribution.


Ordinary Least squares estimates are computed by fitting a regression line on 
given data points that has the minimum sum of the squared deviations (least 
square error). 


Both are used to estimate the parameters of a linear regression model.  

MLE assumes a joint probability mass function, while OLS doesn't require any 
stochastic assumptions for minimizing distance. 
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Take away definition



Take away message

Bimodal logistic regression is the entry to machine learning 

K-classe logistic regression is the entry to deep learning, 
 We will go back to this during the second part of this lecture with Greg.
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X1

X2

44

Generative model Linear Discriminant Analysis (LDA)



X1

X2

X1

45

Generative model Linear Discriminant Analysis (LDA)



X1

X2

LD1

46

We search for a function that minimises the variances and maximises the distance btw 
the means of the two classes

Generative model Linear Discriminant Analysis (LDA)



1. Compute the within class and between class scatter matrices


2. Compute the eigenvectors and eigenvalues for the scatter matrices


3. Sort the eigenvalues and select the top k


4. Create a new matrix containing eigenvectors that map to 
the k eigenvalues


5. Obtain the new features (i.e. LDA components) by taking the dot 
product of the data and the matrix from step 4

47

Generative model Linear Discriminant Analysis (LDA)



Scatter Matrix : 

A scatter matrix is an estimation of covariance matrix when covariance 
cannot be calculated or costly to calculate. The scatter matrix is also used in 
lot of dimensionality reduction exercises. If there are k variables, scatter 
matrix will have k rows and k columns (i.e k x k matrix).
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Generative model Linear Discriminant Analysis (LDA)

S =
n

∑
k=1

(xk − m)(xk − m)T

The scatter matrix is obtained from:

with m being the mean vector:

m =
1
n

n

∑
k=1

xk
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Generative model Linear Discriminant Analysis (LDA)



class_feature_means = pd.DataFrame(columns=data.target_names)

for c, rows in df.groupby('class'):

    class_feature_means[c] = rows.mean()

class_feature_means


within_class_scatter_matrix = np.zeros((13,13))

for c, rows in df.groupby('class'):

rows = rows.drop(['class'], axis=1)

    

    s = np.zeros((13,13))

for index, row in rows.iterrows():

        x, mc = row.values.reshape(13,1), class_feature_means[c].values.reshape(13,1)

        

        s += (x - mc).dot((x - mc).T)

    

    within_class_scatter_matrix += s


In Python we do it this way (if/when using Panda)
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Generative model Linear Discriminant Analysis (LDA)



feature_means = df.mean()

between_class_scatter_matrix = np.zeros((13,13))

for c in class_feature_means:    

    n = len(df.loc[df['class'] == c].index)

    

    mc, m = class_feature_means[c].values.reshape(13,1), feature_means.values.reshape(13,1)

    

    between_class_scatter_matrix += n * (mc - m).dot((mc - m).T)
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eigen_values, eigen_vectors = 
np.linalg.eig(np.linalg.inv(within_class_scatter_matrix).dot(between_class_scatter_matrix))

The eigenvectors with the highest eigenvalues carry the most information 
about the distribution of the data. Thus, we sort the eigenvalues from highest to 
lowest and select the first k eigenvectors. In order to ensure that the eigenvalue maps to 
the same eigenvector after sorting, we place them in a temporary array.

pairs = [(np.abs(eigen_values[i]), eigen_vectors[:,i]) for i in range(len(eigen_values))]

pairs = sorted(pairs, key=lambda x: x[0], reverse=True)

for pair in pairs:

    print(pair[0])


eigen_value_sums = sum(eigen_values)

print('Explained Variance')

for i, pair in enumerate(pairs):

    print('Eigenvector {}: {}'.format(i, (pair[0]/eigen_value_sums).real))
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SB : between classesSw : within class



From lecture #1:


PCA selects the components which would result in the highest spread 
(retain the most information) and not necessarily the ones which maximize 
the separation between classes.

LDA PCA

53

So, bottom line is….



   Suppose a problem of classification into two classes C1 and C2 and from 1D data 
modelled by a random variable x (Observation) 

p(CK |x) =
p(x |Ck)p(Ck)

p(x)

A word on probabilistic classifier (Bayes) 

Likelihood A priori

p(C1) = 0.3 
p(C2) = 0.7

Generative model
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Non-linear cases

55



Non-linear cases

Remember, like the non-linear regression (see lecture 1)
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X1

X2

Support Vector Classifier 

Margin M= Minimal distance between hyperplane and observations 
Optimal Hyperplane = with the maximal margin, the thicker layer 
that can be slipped 

Support vectors= sample features on the margin M  

M
Y = w x + b

57

-> This can be applied to non-linear function as well



X1

X2

Support Vector Classifier 

What if the problem is not linear? 
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X1

X2

Support Vector Classifier 

What if the problem is not linear? 

X2 + Y2 = 1
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X1

X2

Support Vector Classifier 

What if the problem is not linear? 

X2 + Y2 = 1

polar coordinate system 
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Classifier Zoo
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y(x, w) = w0 + w1x + w2x2 + … + wNsN =
N

∑
j=0

wjxj

Fitting problem

E(w) =
1
2

I

∑
i=1

y(xn, w) − yi
2

e.g., N degree polynomial regression

Least squares of errors
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y(x, w) = w0 + w1x + w2x2 + … + wNsN =
N

∑
j=0

wjxj

Fitting problem

E(w) =
1
2

I

∑
i=1

y(xn, w) − yi
2

Evaluation of model prediction over the data

66



y(x, w) = w0 + w1x + w2x2 + … + wNsN =
N

∑
j=0

wjxj

Fitting problem

E(w) =
1
2

I

∑
i=1

y(xn, w) − yi
2

Which one is the best?
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Fitting problem
The least square errors is not a good criteria for  

evaluating the model prediction ability 
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The overfitting problem can be overcome by adding data into the training set 
=> Big Data!!!!

Fitting problem

Training set (= 13) Training set (=100)

69

Or we provide a priori knowledge



Fitting problem
The least square errors is not a good criteria for  

evaluating the model prediction ability 

Underfitting Underfitting 

Overfitting 
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An ideal model is the one with small variance and small bias.

Fitting problem



In order to create less complex (parsimonious) model when you have a large number of features in your 
dataset, some of the Regularization techniques used to address over-fitting and feature selection are

n

∑
i=1

(yi −
p

∑
j=1

xi, jwj)2 + λ
p

∑
j=1

w2
j

L1 Regularization 
Lasso Regression

L2 Regularization 
Ridge Regression

Regularization

n

∑
i=1

(yi −
p

∑
j=1

xi, jwj)2 + λ
p

∑
j=1

∥wj∥

The key difference between L1 and L2 techniques is that L1 shrinks the less important 
feature’s coefficient towards zero thus, removing some feature altogether. So, this works 
well for feature selection in case we have a huge number of features.

L2-Reg L2-Reg

72

Fitting problem
:= adding penalty term



Fitting problem
Model selection

Data splitting

Training sub data set

Testing sub data set

Assessing the criteria

Evaluating the prediction

ERMS = E(w)/(N − p)

E(w) =
I

∑
i=1

y(xn, w) − yi
2

Root Mean Square of Error (RMS)

Tr
ai

ni
ng

Te
st

p being the number of parameters (i.e., size of w)
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1/4

3/4

Label



Fitting problem
Model selection

Crossing validation

Data splitting

Te
st
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Fitting problem
Model selection

Crossing validation

Data splitting

Te
st

Data splitting

Te
st
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Fitting problem
Model selection

Crossing validation

Data splitting

Te
st

Data splitting

Te
st

Data splitting

Te
st

Data splitting
Te

st
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Performance and score
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Performance and score

Sensitivity, recall, true positive rate

Specificity, true negative rate

Critical Success Index

TP
TP + FN

TN
TN + FP

TP
TP + FN + FP

Precision
TN

TN + FN

Accuracy, classification rate
TP + TN

TP + TN + FP + FN
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How to proceed ? 


• Fit on learning zone 


• predict on test zone and estimate performance. 
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Lecture #1

Lecture #2.1

Lecture #2.2



81

Clustering and the like....

Grouping : building objects collection

- sharing similar properties (in the considered feature space)


- non-sharing similar properties when not belonging to the same group 

Clustering is an unsupervised classification (no predefined classes)



4	

Similarité	entre	objets	

•  Les	distances	expriment	une	similarité		

•  Ex:	la	distance	de	Minkowski	:	

où	i	=	(xi1,	xi2,	…,	xip)	et	j	=	(xj1,	xj2,	…,	xjp)	sont	deux	objets	p-
dimensionnels	et	q	un	en4er	posi4f	

•  Si	q	=	1,	d		est	la	distance	de		ManhaQan	
	

q
q

pp

qq

jxixjxixjxixjid )||...|||(|),(
2211

−++−+−=

||...||||),(
2211 pp jxixjxixjxixjid −++−+−=
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Similarity (distance in the feature space)

e.g., Minkowski distance

where are two p-dimensional objects 


with q being a positive integer
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https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019

• Partitioning: Dividing the population, and evaluate in regard to criteria


• Hierarchical: Decomposition over criteria


• Density: Connectivity in the space feature


• Grid: multi-level of granularity


• Model-based: a priori rules driven from a given model

Criteria of clustering

https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019
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Partitioning clustering

Create partition of k clusters following criteria

K-mean (MacQueen' 67) : each cluster is defined from its centroid

K-medoids (Kaufman & Rousseeuw 87) : each cluster is defined from one object
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K-means algorithm
1. Define k (number of clusters)


2. Assigning each object O to cluster Ci with Mi centroid as we minimise dist(O,Mi)


3. Compute barycentre of Mi for each cluster


4. Goto #2 in case of a new assignment

Strength
Efficient towards 𝒪(tkn) 


n: object # 

k: cluster #

t: iteration #

as k,t<<n

Weakness

Not applicable if features are not interval/ratio (see lecture #1)

k-cluster needs to be defined

Not suitable for non-convex hull

https://fw.ipgp.fr/rhs0024/wiki/index.php/Atelier_Machine_et_Deep_learning%2C_20_mai_2019


9	

Clustering	Hiérarchique		

•  U4liser	la	matrice	de	distances	comme	critère	de	
regroupement.	k		n’a	pas	à	être	précisé,	mais	a	besoin	d’une	
condi4on	d’arrêt	

Etape0	 Etape	
1	

Etape	
2	

Etape	
3	

Etape	
4	

b	

d	

c	

e	

a	
a	b	

d	e	

c	d	e	

a	b	c	d	e	

Etape	
4	

Etape	
3	

Etape	
2	

Etape	
1	

Etape	
0	

agglomera)ve	
(AGNES)	

divisive	
(DIANA)	

86

Hierarchical clustering

We compute the distance matrix sa clustering criteria. 


K is not defined but we need a stop condition.
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Clustering	basé	sur	la	densité	

•  Voit	les	clusters	comme	des	régions	denses	séparées	par	des	

régions	qui	le	sont	moins	(bruit)	

•  Deux	paramètres:	

–  Eps:	Rayon	maximum	du	voisinage	

– MinPts:	Nombre	minimum	de	points	dans	le	voisinage-Eps	

d’un	point	

•  Voisinage	:	VEps(p):	{q	∈	D	|	dist(p,q)	<=	Eps}	

•  Un	point	p	est	directement	densité-accessible	à	par4r	de	q	resp.	
à	Eps,	MinPts	si		

–  1)	p	∈VEps(q)	

–  2)	|VEps	(q)|	>=	MinPts		

						

p	

q	

MinPts	=	5	

Eps	=	1	cm	

87

Density clustering

Dense cloud vs parse areas (i.e., noise)

Two parameters
Eps: neighbours maximum radius
MinPts: Minimal number of points in the Eps neighbours radius

p Belongs to neighbours Vesp if

Work with non-convex hull

11	

Clustering	basé	sur	la	densité	

•  Voit	les	clusters	comme	des	régions	denses	séparées	par	des	

régions	qui	le	sont	moins	(bruit)	

•  Deux	paramètres:	

–  Eps:	Rayon	maximum	du	voisinage	

– MinPts:	Nombre	minimum	de	points	dans	le	voisinage-Eps	

d’un	point	

•  Voisinage	:	VEps(p):	{q	∈	D	|	dist(p,q)	<=	Eps}	

•  Un	point	p	est	directement	densité-accessible	à	par4r	de	q	resp.	
à	Eps,	MinPts	si		

–  1)	p	∈VEps(q)	

–  2)	|VEps	(q)|	>=	MinPts		

						

p	

q	

MinPts	=	5	

Eps	=	1	cm	

Strength



Unsupervised 
Finding forms, an intrinsic structure in the 
data without a priori

Supervised 
Training a model on input and output data

known exits so that he can predict the exit 
on future entries. An a priori the data set 
of learning

88

Lecture #2.3
with Greg in a few



Deep learning is a subfield of Machine learning aiming at data 
representation.


DL algorithms attempt to learn a representation by using a hierarchy 
of multiple layers (hidden layers) based on a neural network

89



Machine learning is: 

Data
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Machine learning is: 

Animal

Tree


Mountain

Data Features Classification Output
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Machine learning is: 

Animal

Tree


Mountain

Data Features Classification Output

Animal

Tree


Mountain

Data Features extraction + classification Output

Deep learning is: 
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