{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "EDS_2020_2021_Python_Intro2Pandas.ipynb",
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tnhlRZWVFSg6"
      },
      "source": [
        "# Pandas: a convenient library for data science\n",
        "\n",
        "In this notebook, it's out of questions to reinvent what has been already done thousands of times. Nevertheless, one can focus on the usesul commands which will be used during the *Earth Data Sciences* practical activities.\n",
        "\n",
        "\n",
        "Pandas is part of the anaconda toolbox. So if it's already installed, you have nothing to do but importing the Pandas library just writing:\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "uwByVDrVGtDl"
      },
      "source": [
        "import pandas as pd"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NFc5khEnG18h"
      },
      "source": [
        "Pandas is made of two core objects : The **Dataframes** and the **Series**\n",
        "Let's see that in details.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ar5IlSu5HKMV"
      },
      "source": [
        "## DataFrame\n",
        "\n",
        "Roughly, DataFrame object is a table ie, an array with some entries made of values"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 143
        },
        "id": "_pTHEJ4CHqTy",
        "outputId": "05c864a9-4322-4f04-bb6c-c352cab6e43e"
      },
      "source": [
        "myfirstdataframe = pd.DataFrame({\"Hero\":[\"SpiderMan\", \"Captain America\", \"Iron Man\"], \"Hair\":[\"Brown\", \"Blond\", \"Black\"]}, )\n",
        "display(myfirstdataframe)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Hero</th>\n",
              "      <th>Hair</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>SpiderMan</td>\n",
              "      <td>Brown</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Captain America</td>\n",
              "      <td>Blond</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Iron Man</td>\n",
              "      <td>Black</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "              Hero   Hair\n",
              "0        SpiderMan  Brown\n",
              "1  Captain America  Blond\n",
              "2         Iron Man  Black"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "JyOSGct8K5eI"
      },
      "source": [
        "Of course, entries can be either strings, integers, floats... \n",
        "\n",
        "In the previous example, indexes are (0, 1, 2). It can be customed using the keyword **index**\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 161
        },
        "id": "uBY6nGrxODR8",
        "outputId": "09f18e01-86f7-4c0c-9e2b-cdd625ec994a"
      },
      "source": [
        "myfirstdataframe = pd.DataFrame({\"Hero\":[\"SpiderMan\", \"Captain America\", \"Iron Man\"], \"Hair\":[\"Brown\", \"Blond\", \"Black\"]}, \n",
        "                                [\"Hero 1\", \"Hero 2\", \"Hero 3\"])\n",
        "display(myfirstdataframe)\n",
        "type(myfirstdataframe)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Hero</th>\n",
              "      <th>Hair</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>Hero 1</th>\n",
              "      <td>SpiderMan</td>\n",
              "      <td>Brown</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>Hero 2</th>\n",
              "      <td>Captain America</td>\n",
              "      <td>Blond</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>Hero 3</th>\n",
              "      <td>Iron Man</td>\n",
              "      <td>Black</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                   Hero   Hair\n",
              "Hero 1        SpiderMan  Brown\n",
              "Hero 2  Captain America  Blond\n",
              "Hero 3         Iron Man  Black"
            ]
          },
          "metadata": {
            "tags": []
          }
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "pandas.core.frame.DataFrame"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 36
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "25fge8ivLJ4z"
      },
      "source": [
        "### Exercice 1: \n",
        "Create a DataFrame *fruits* with the following entries\n",
        "\n",
        "|         |Apples|Bananas|Strawberries|\n",
        "| -------- | -------- | -------- | -------- | \n",
        "|Basket 1 | 12| 34| 45|\n",
        "|Basket 2 | 26| 18| 89|"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "7eff1u4xMrG1"
      },
      "source": [
        "# Insert your code here, then test it "
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QC8GzLiWOdru"
      },
      "source": [
        "### Solution\n",
        "Click below for a solution. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 112
        },
        "id": "AmGwdHb5MvP6",
        "outputId": "79ed4398-9f46-4c36-bb14-2dc6c6c80e3e"
      },
      "source": [
        "fruits = pd.DataFrame({\"Apples\":[12,26], \"Bananas\":[34,18], \"Strawberries\":[45,89]}, index = [\"Basket 1\", \"Basket 2\"])\n",
        "display(fruits)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Apples</th>\n",
              "      <th>Bananas</th>\n",
              "      <th>Strawberries</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>Basket 1</th>\n",
              "      <td>12</td>\n",
              "      <td>34</td>\n",
              "      <td>45</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>Basket 2</th>\n",
              "      <td>26</td>\n",
              "      <td>18</td>\n",
              "      <td>89</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "          Apples  Bananas  Strawberries\n",
              "Basket 1      12       34            45\n",
              "Basket 2      26       18            89"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "LunpDLOfO6xf"
      },
      "source": [
        "## Series objects\n",
        "\n",
        "In fact, it's a one column DataFrame.\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 88
        },
        "id": "igpLBysYPHkI",
        "outputId": "b88fd1ee-4bf5-43ff-d70a-6b3078a25b0e"
      },
      "source": [
        "s1 = pd.Series([299792458, 6.62607015e-34, 1.380649e-23], index=[\"Célérité de la lumière dans le vide\", \"Constante de Planck\", \"Constante de Boltzmann\"])\n",
        "display(s1)\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "Célérité de la lumière dans le vide    2.997925e+08\n",
              "Constante de Planck                    6.626070e-34\n",
              "Constante de Boltzmann                 1.380649e-23\n",
              "dtype: float64"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wOSGXUHYQIot",
        "outputId": "a16db951-db2b-4686-dba5-4ab4bb5f2011"
      },
      "source": [
        "type(s1)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "pandas.core.series.Series"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 39
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "TYXJILb9Ssgb"
      },
      "source": [
        "Just to make sure, if one extract the first column from the previous DataFrame"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 70
        },
        "id": "U_vrOVSlSZy6",
        "outputId": "ffd174c3-2162-4928-9837-5c87cbabcb2b"
      },
      "source": [
        "Apple = fruits[\"Apples\"]\n",
        "display (Apple)\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "Basket 1    12\n",
              "Basket 2    26\n",
              "Name: Apples, dtype: int64"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "RijLvIA0SpGI",
        "outputId": "8764fddc-dac6-4b3d-9b0e-7cfaf1b9dbde"
      },
      "source": [
        "type(Apple)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "pandas.core.series.Series"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 42
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "OUyLvD2jS14i"
      },
      "source": [
        "But the most interesting part is to read text, cvs files to convert them into Pandas DataFrames. "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6yLQ_InzTAl0"
      },
      "source": [
        "## From files to DataFrames\n",
        "\n",
        "Here, we are reading a dataset took from Kaggle about indian food.\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 363
        },
        "id": "S5MQPKSPUFjN",
        "outputId": "4235b79a-b7a6-4922-d9a3-4f063f2e00e8"
      },
      "source": [
        "\n",
        "indian_food = pd.read_csv(\"indian_food.csv\")\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Balu shahi</td>\n",
              "      <td>Maida flour, yogurt, oil, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>45</td>\n",
              "      <td>25</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Boondi</td>\n",
              "      <td>Gram flour, ghee, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>80</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Gajar ka halwa</td>\n",
              "      <td>Carrots, milk, sugar, ghee, cashews, raisins</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Punjab</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Ghevar</td>\n",
              "      <td>Flour, ghee, kewra, milk, clarified butter, su...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gulab jamun</td>\n",
              "      <td>Milk powder, plain flour, baking powder, ghee,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Imarti</td>\n",
              "      <td>Sugar syrup, lentil flour</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>50</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>Jalebi</td>\n",
              "      <td>Maida, corn flour, baking soda, vinegar, curd,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>50</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Uttar Pradesh</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>Kaju katli</td>\n",
              "      <td>Cashews, ghee, cardamom, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>Kalakand</td>\n",
              "      <td>Milk, cottage cheese, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>Kheer</td>\n",
              "      <td>Milk, rice, sugar, dried fruits</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "             name  ... region\n",
              "0      Balu shahi  ...   East\n",
              "1          Boondi  ...   West\n",
              "2  Gajar ka halwa  ...  North\n",
              "3          Ghevar  ...   West\n",
              "4     Gulab jamun  ...   East\n",
              "5          Imarti  ...   East\n",
              "6          Jalebi  ...  North\n",
              "7      Kaju katli  ...     -1\n",
              "8        Kalakand  ...   East\n",
              "9           Kheer  ...     -1\n",
              "\n",
              "[10 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QDDe_WnNUjQo"
      },
      "source": [
        "# Useful commands to analyze your sets of data\n",
        "\n",
        "- head()\n",
        "- tail()\n",
        "- info()\n",
        "- describe()\n",
        "- shape"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "DcBUB5cWUyJb",
        "outputId": "bd4d80e3-9a9a-4571-a452-d33b9663d422"
      },
      "source": [
        "# The first entries\n",
        "display(indian_food.head())  # Default number of lines is 5. You can change by myset.head(mynumber)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Balu shahi</td>\n",
              "      <td>Maida flour, yogurt, oil, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>45</td>\n",
              "      <td>25</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Boondi</td>\n",
              "      <td>Gram flour, ghee, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>80</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Gajar ka halwa</td>\n",
              "      <td>Carrots, milk, sugar, ghee, cashews, raisins</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Punjab</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Ghevar</td>\n",
              "      <td>Flour, ghee, kewra, milk, clarified butter, su...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gulab jamun</td>\n",
              "      <td>Milk powder, plain flour, baking powder, ghee,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "             name  ... region\n",
              "0      Balu shahi  ...   East\n",
              "1          Boondi  ...   West\n",
              "2  Gajar ka halwa  ...  North\n",
              "3          Ghevar  ...   West\n",
              "4     Gulab jamun  ...   East\n",
              "\n",
              "[5 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "_aQSax4qU23Q",
        "outputId": "c9a3845a-7c96-4982-cc3f-8504a37a657f"
      },
      "source": [
        "# The last entries\n",
        "display(indian_food.tail())"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>250</th>\n",
              "      <td>Til Pitha</td>\n",
              "      <td>Glutinous rice, black sesame seeds, gur</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>5</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Assam</td>\n",
              "      <td>North East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>251</th>\n",
              "      <td>Bebinca</td>\n",
              "      <td>Coconut milk, egg yolks, clarified butter, all...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Goa</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>252</th>\n",
              "      <td>Shufta</td>\n",
              "      <td>Cottage cheese, dry dates, dried rose petals, ...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Jammu &amp; Kashmir</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>253</th>\n",
              "      <td>Mawa Bati</td>\n",
              "      <td>Milk powder, dry fruits, arrowroot powder, all...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>45</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Madhya Pradesh</td>\n",
              "      <td>Central</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>254</th>\n",
              "      <td>Pinaca</td>\n",
              "      <td>Brown rice, fennel seeds, grated coconut, blac...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Goa</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "          name  ...      region\n",
              "250  Til Pitha  ...  North East\n",
              "251    Bebinca  ...        West\n",
              "252     Shufta  ...       North\n",
              "253  Mawa Bati  ...     Central\n",
              "254     Pinaca  ...        West\n",
              "\n",
              "[5 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "EfNcGXAMVBf_",
        "outputId": "2667ed46-e9a4-42c1-8669-62573656b304"
      },
      "source": [
        "# This one is very useful to check the type of data, the size of each column.\n",
        "# \n",
        "indian_food.info()"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "<class 'pandas.core.frame.DataFrame'>\n",
            "RangeIndex: 255 entries, 0 to 254\n",
            "Data columns (total 9 columns):\n",
            " #   Column          Non-Null Count  Dtype \n",
            "---  ------          --------------  ----- \n",
            " 0   name            255 non-null    object\n",
            " 1   ingredients     255 non-null    object\n",
            " 2   diet            255 non-null    object\n",
            " 3   prep_time       255 non-null    int64 \n",
            " 4   cook_time       255 non-null    int64 \n",
            " 5   flavor_profile  255 non-null    object\n",
            " 6   course          255 non-null    object\n",
            " 7   state           255 non-null    object\n",
            " 8   region          254 non-null    object\n",
            "dtypes: int64(2), object(7)\n",
            "memory usage: 18.1+ KB\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 300
        },
        "id": "zcVv5lLkVnN8",
        "outputId": "8d867355-04a6-4e67-f446-9d5fad91aa4f"
      },
      "source": [
        "# Describe function is only available for numeric columns.\n",
        "indian_food.describe()"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>count</th>\n",
              "      <td>255.000000</td>\n",
              "      <td>255.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>mean</th>\n",
              "      <td>31.105882</td>\n",
              "      <td>34.529412</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>std</th>\n",
              "      <td>72.554409</td>\n",
              "      <td>48.265650</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>min</th>\n",
              "      <td>-1.000000</td>\n",
              "      <td>-1.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>25%</th>\n",
              "      <td>10.000000</td>\n",
              "      <td>20.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>50%</th>\n",
              "      <td>10.000000</td>\n",
              "      <td>30.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>75%</th>\n",
              "      <td>20.000000</td>\n",
              "      <td>40.000000</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>max</th>\n",
              "      <td>500.000000</td>\n",
              "      <td>720.000000</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "        prep_time   cook_time\n",
              "count  255.000000  255.000000\n",
              "mean    31.105882   34.529412\n",
              "std     72.554409   48.265650\n",
              "min     -1.000000   -1.000000\n",
              "25%     10.000000   20.000000\n",
              "50%     10.000000   30.000000\n",
              "75%     20.000000   40.000000\n",
              "max    500.000000  720.000000"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 50
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "gBt5D49idiE1",
        "outputId": "d0753dd0-8eaa-43c3-d7a3-7ebcd54aa402"
      },
      "source": [
        "# It's possible to restrict the choice to one column only \n",
        "indian_food.prep_time.describe()"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "count    255.000000\n",
              "mean      31.105882\n",
              "std       72.554409\n",
              "min       -1.000000\n",
              "25%       10.000000\n",
              "50%       10.000000\n",
              "75%       20.000000\n",
              "max      500.000000\n",
              "Name: prep_time, dtype: float64"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 66
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ou7tifeOWjBd",
        "outputId": "4148c33f-4eb8-418e-ba2d-1c0a01cddabd"
      },
      "source": [
        "# Of course, one can get the shape of the dataset\n",
        "indian_food.shape"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "(255, 9)"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 51
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "udznYbQAd47X"
      },
      "source": [
        "If you want to check the number of occurence for a given field, we can use `value_counts()`"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "SJj3SRbheFfd",
        "outputId": "50ff3a11-a2a3-48b1-c621-db10d388ed4b",
        "colab": {
          "base_uri": "https://localhost:8080/"
        }
      },
      "source": [
        "indian_food.state.value_counts()"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Gujarat            35\n",
              "Punjab             32\n",
              "Maharashtra        30\n",
              "-1                 24\n",
              "West Bengal        24\n",
              "Assam              21\n",
              "Tamil Nadu         20\n",
              "Andhra Pradesh     10\n",
              "Uttar Pradesh       9\n",
              "Kerala              8\n",
              "Odisha              7\n",
              "Karnataka           6\n",
              "Rajasthan           6\n",
              "Telangana           5\n",
              "Goa                 3\n",
              "Bihar               3\n",
              "Jammu & Kashmir     2\n",
              "Manipur             2\n",
              "Madhya Pradesh      2\n",
              "NCT of Delhi        1\n",
              "Tripura             1\n",
              "Nagaland            1\n",
              "Chhattisgarh        1\n",
              "Uttarakhand         1\n",
              "Haryana             1\n",
              "Name: state, dtype: int64"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 67
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "tNbjcxIxV3jT"
      },
      "source": [
        "# Indexing and selecting the data\n",
        "\n",
        "It's now time to see how to select any data in the DataFrame. \n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "tk7KY6f9XRuK",
        "outputId": "91084cc4-7a78-4734-dc7c-e79817986d37"
      },
      "source": [
        "# Let's see how to get the name of the recipes. They are stored in the field \"name\"\n",
        "indian_food.name   # or indian_food[\"name\"]\n",
        "\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0          Balu shahi\n",
              "1              Boondi\n",
              "2      Gajar ka halwa\n",
              "3              Ghevar\n",
              "4         Gulab jamun\n",
              "            ...      \n",
              "250         Til Pitha\n",
              "251           Bebinca\n",
              "252            Shufta\n",
              "253         Mawa Bati\n",
              "254            Pinaca\n",
              "Name: name, Length: 255, dtype: object"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 52
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 36
        },
        "id": "aFi6WfpzXnQK",
        "outputId": "bfa95b6d-82ce-48ce-e4fc-3dc89536ada5"
      },
      "source": [
        "# Find the name of the 4th recipe\n",
        "indian_food[\"name\"][3]\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            },
            "text/plain": [
              "'Ghevar'"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 54
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "a-iqFimHYAg5"
      },
      "source": [
        "## Indexing with `iloc` and `loc`\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0F6xW3KmaBWV"
      },
      "source": [
        "### `iloc`: the index-based selection\n",
        "\n",
        "You select the data by their numerical position in the data."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "3tAiHVnMYtbB",
        "outputId": "af379b76-a97d-4ef2-a77a-bc0afb98f05e"
      },
      "source": [
        "# For example, the second entry.\n",
        "indian_food.iloc[1]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "name                               Boondi\n",
              "ingredients       Gram flour, ghee, sugar\n",
              "diet                           vegetarian\n",
              "prep_time                              80\n",
              "cook_time                              30\n",
              "flavor_profile                      sweet\n",
              "course                            dessert\n",
              "state                           Rajasthan\n",
              "region                               West\n",
              "Name: 1, dtype: object"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 55
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 363
        },
        "id": "5CAXTb8mY7Qn",
        "outputId": "03cc8ebc-4748-4b4f-c767-9042873fb1fa"
      },
      "source": [
        "# Another example, 2nd to 12th entries\n",
        "indian_food.iloc[1:11]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Boondi</td>\n",
              "      <td>Gram flour, ghee, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>80</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Gajar ka halwa</td>\n",
              "      <td>Carrots, milk, sugar, ghee, cashews, raisins</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Punjab</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Ghevar</td>\n",
              "      <td>Flour, ghee, kewra, milk, clarified butter, su...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gulab jamun</td>\n",
              "      <td>Milk powder, plain flour, baking powder, ghee,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Imarti</td>\n",
              "      <td>Sugar syrup, lentil flour</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>50</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>Jalebi</td>\n",
              "      <td>Maida, corn flour, baking soda, vinegar, curd,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>50</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Uttar Pradesh</td>\n",
              "      <td>North</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>Kaju katli</td>\n",
              "      <td>Cashews, ghee, cardamom, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>Kalakand</td>\n",
              "      <td>Milk, cottage cheese, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>West Bengal</td>\n",
              "      <td>East</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>Kheer</td>\n",
              "      <td>Milk, rice, sugar, dried fruits</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>10</th>\n",
              "      <td>Laddu</td>\n",
              "      <td>Gram flour, ghee, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "              name  ... region\n",
              "1           Boondi  ...   West\n",
              "2   Gajar ka halwa  ...  North\n",
              "3           Ghevar  ...   West\n",
              "4      Gulab jamun  ...   East\n",
              "5           Imarti  ...   East\n",
              "6           Jalebi  ...  North\n",
              "7       Kaju katli  ...     -1\n",
              "8         Kalakand  ...   East\n",
              "9            Kheer  ...     -1\n",
              "10           Laddu  ...     -1\n",
              "\n",
              "[10 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 58
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "D-x3KNerZjxa",
        "outputId": "ddf094e2-855e-4c0d-8db8-5adb394f73ff"
      },
      "source": [
        "# From the previous example, i just want the ingredients\n",
        "indian_food.iloc[1:11, 1]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "1                               Gram flour, ghee, sugar\n",
              "2          Carrots, milk, sugar, ghee, cashews, raisins\n",
              "3     Flour, ghee, kewra, milk, clarified butter, su...\n",
              "4     Milk powder, plain flour, baking powder, ghee,...\n",
              "5                             Sugar syrup, lentil flour\n",
              "6     Maida, corn flour, baking soda, vinegar, curd,...\n",
              "7                        Cashews, ghee, cardamom, sugar\n",
              "8                           Milk, cottage cheese, sugar\n",
              "9                       Milk, rice, sugar, dried fruits\n",
              "10                              Gram flour, ghee, sugar\n",
              "Name: ingredients, dtype: object"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 59
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hbuGF27PYrXN"
      },
      "source": [
        "### `loc`: the label selection\n",
        "\n",
        "You select the data by their index data and not the position."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 36
        },
        "id": "3uYz0GB0ap3v",
        "outputId": "8a57c809-a28a-4a42-a764-220ee9839aac"
      },
      "source": [
        "# For example, i want to extract origin state of the recipe at index 5\n",
        "indian_food.loc[5,\"state\"]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            },
            "text/plain": [
              "'West Bengal'"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 61
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "d3IbIYmlbXpo"
      },
      "source": [
        "## Selecting data\n",
        "\n",
        "The most interesting part of Pandas is to select the data with some easy to use conditionnal statements"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "HLMwxn0cbu4q",
        "outputId": "af0cc9a9-51f7-4341-f966-9b31d2125ebc"
      },
      "source": [
        "# For example, select the recipes from the West\n",
        "indian_food.region == \"West\" # It creates a mask for your data"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0      False\n",
              "1       True\n",
              "2      False\n",
              "3       True\n",
              "4      False\n",
              "       ...  \n",
              "250    False\n",
              "251     True\n",
              "252    False\n",
              "253    False\n",
              "254     True\n",
              "Name: region, Length: 255, dtype: bool"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 62
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 423
        },
        "id": "_zfH4uHhcF4z",
        "outputId": "50d24193-910b-4634-8821-2780cba06437"
      },
      "source": [
        "# Select the data with the previous mask.\n",
        "indian_food[indian_food.region == \"West\"]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>Boondi</td>\n",
              "      <td>Gram flour, ghee, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>80</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Ghevar</td>\n",
              "      <td>Flour, ghee, kewra, milk, clarified butter, su...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>30</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>16</th>\n",
              "      <td>Sheera</td>\n",
              "      <td>Semolina, ghee, nuts, milk</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>25</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>19</th>\n",
              "      <td>Sohan papdi</td>\n",
              "      <td>Gram flour, ghee, sugar, milk, cardamom</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>39</th>\n",
              "      <td>Chikki</td>\n",
              "      <td>Peanuts, jaggery</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>...</th>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>217</th>\n",
              "      <td>Khaman</td>\n",
              "      <td>Yogurt, fresh coconut, sesame seeds, semolina,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>218</th>\n",
              "      <td>Turiya Patra Vatana sabji</td>\n",
              "      <td>Ridge gourd, baking soda, sugar, grated coconu...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>35</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>219</th>\n",
              "      <td>Churma Ladoo</td>\n",
              "      <td>Whole wheat flour, khus khus, sesame seeds, dr...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>12</td>\n",
              "      <td>40</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>251</th>\n",
              "      <td>Bebinca</td>\n",
              "      <td>Coconut milk, egg yolks, clarified butter, all...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>60</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Goa</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>254</th>\n",
              "      <td>Pinaca</td>\n",
              "      <td>Brown rice, fennel seeds, grated coconut, blac...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>sweet</td>\n",
              "      <td>dessert</td>\n",
              "      <td>Goa</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "<p>74 rows × 9 columns</p>\n",
              "</div>"
            ],
            "text/plain": [
              "                          name  ... region\n",
              "1                       Boondi  ...   West\n",
              "3                       Ghevar  ...   West\n",
              "16                      Sheera  ...   West\n",
              "19                 Sohan papdi  ...   West\n",
              "39                      Chikki  ...   West\n",
              "..                         ...  ...    ...\n",
              "217                     Khaman  ...   West\n",
              "218  Turiya Patra Vatana sabji  ...   West\n",
              "219               Churma Ladoo  ...   West\n",
              "251                    Bebinca  ...   West\n",
              "254                     Pinaca  ...   West\n",
              "\n",
              "[74 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 63
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "-6demF6QcYWe",
        "outputId": "61290956-f7aa-457c-ab8e-e92db8e393c0"
      },
      "source": [
        "#In fact you wants the recipes from the West which are spicy\n",
        "indian_food[(indian_food.region == \"West\") & (indian_food.flavor_profile == \"spicy\")]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>name</th>\n",
              "      <th>ingredients</th>\n",
              "      <th>diet</th>\n",
              "      <th>prep_time</th>\n",
              "      <th>cook_time</th>\n",
              "      <th>flavor_profile</th>\n",
              "      <th>course</th>\n",
              "      <th>state</th>\n",
              "      <th>region</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>83</th>\n",
              "      <td>Daal baati churma</td>\n",
              "      <td>Moong dal, masoor dal, chana dal, wheat flour,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>90</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>88</th>\n",
              "      <td>Poha</td>\n",
              "      <td>Beaten rice flakes, potato, curry leaves, gree...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>113</th>\n",
              "      <td>Pattor</td>\n",
              "      <td>Arbi ke patte, sesame seeds, gur, bengal gram ...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>165</th>\n",
              "      <td>Amti</td>\n",
              "      <td>Kala masala, arhar dal, curry leaves, mustard ...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>45</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>166</th>\n",
              "      <td>Zunka</td>\n",
              "      <td>Gram flour, mustard, garlic, turmeric, red chilli</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>25</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>167</th>\n",
              "      <td>Kolim Jawla</td>\n",
              "      <td>Baingan, fish, coconut oil, fresh coconut, ginger</td>\n",
              "      <td>non vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>168</th>\n",
              "      <td>Saath</td>\n",
              "      <td>Urad dal, potatoes, wheat flour, sooji</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>169</th>\n",
              "      <td>Bajri no rotlo</td>\n",
              "      <td>Wheat flour, pearl millet flour, hot water</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>10</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>172</th>\n",
              "      <td>Bombil fry</td>\n",
              "      <td>Bombay duck, malvani masala, rice flour, bomba...</td>\n",
              "      <td>non vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>173</th>\n",
              "      <td>Chakali</td>\n",
              "      <td>Rice flour, sesame, plain flour, turmeric, red...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>174</th>\n",
              "      <td>Chevdo</td>\n",
              "      <td>Citric acid, fry, raisins, sugar, chana daal</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>175</th>\n",
              "      <td>Chorafali</td>\n",
              "      <td>Urad dal, bengal gram flour, dried mango, baki...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>5</td>\n",
              "      <td>15</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>177</th>\n",
              "      <td>Daal Dhokli</td>\n",
              "      <td>Whole wheat flour, dal, kokum, gur, bengal gra...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>178</th>\n",
              "      <td>Kutchi dabeli</td>\n",
              "      <td>Pav, aloo, peanut, pomegranate, star anise</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>30</td>\n",
              "      <td>10</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>181</th>\n",
              "      <td>Dhokla</td>\n",
              "      <td>Rava, coconut, gram flour, mustard, sesame</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>183</th>\n",
              "      <td>Gatta curry</td>\n",
              "      <td>Yogurt, besan, sauce, garam masala powder, gra...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Rajasthan</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>185</th>\n",
              "      <td>Ghooghra</td>\n",
              "      <td>Dry fruits, semolina, all purpose flour</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>186</th>\n",
              "      <td>Handwo</td>\n",
              "      <td>Bottle gourd, chana dal, cabbage, urad dal, to...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>188</th>\n",
              "      <td>Jeera Aloo</td>\n",
              "      <td>Green chilies, lemon juice, chili powder, boil...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>191</th>\n",
              "      <td>Khakhra</td>\n",
              "      <td>Whole wheat flour, low fat, bengal gram flour</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>192</th>\n",
              "      <td>Khandvi</td>\n",
              "      <td>Green chili paste, white sesame seeds, gram fl...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>45</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>193</th>\n",
              "      <td>Kombdi vade</td>\n",
              "      <td>Rice flour, urad dal, wheat flour, gram flour,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>25</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>195</th>\n",
              "      <td>Koshimbir</td>\n",
              "      <td>Cucumber, carrot, tomatoes, cilantro</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>10</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>199</th>\n",
              "      <td>Patra</td>\n",
              "      <td>Arbi ke patte, sesame seeds, gur, bengal gram ...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>200</th>\n",
              "      <td>Pav Bhaji</td>\n",
              "      <td>Pav bhaji masala, gobi, potatoes, green peas, ...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>201</th>\n",
              "      <td>Puri Bhaji</td>\n",
              "      <td>Aloo, urad dal, mustard, ginger, curry leaves</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>202</th>\n",
              "      <td>Sabudana Khichadi</td>\n",
              "      <td>Raw peanuts, sabudana, lemon, avocado oil, cur...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>70</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>203</th>\n",
              "      <td>Sev khamani</td>\n",
              "      <td>Khaman, pomegranate, sev, powdered sugar, garlic</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>204</th>\n",
              "      <td>Sev tameta</td>\n",
              "      <td>Sev, ginger, tomato, sugar</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>205</th>\n",
              "      <td>Namakpara</td>\n",
              "      <td>Wheat flour, baking soda, all purpose flour, b...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>35</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>207</th>\n",
              "      <td>Surnoli</td>\n",
              "      <td>Rice flakes, yogurt, raw rice, jaggery, grated...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>60</td>\n",
              "      <td>10</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>208</th>\n",
              "      <td>Thalipeeth</td>\n",
              "      <td>Whole wheat flour, rice flour, pearl millet fl...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>25</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>209</th>\n",
              "      <td>Undhiyu</td>\n",
              "      <td>Sweet potato, surti papdi, baby potatoes, valo...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>25</td>\n",
              "      <td>60</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>210</th>\n",
              "      <td>Veg Kolhapuri</td>\n",
              "      <td>Gobi, potato, beans, khus khus, coconut</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>20</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Maharashtra</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>211</th>\n",
              "      <td>Vindaloo</td>\n",
              "      <td>Chicken, coconut oil, wine vinegar, ginger, gr...</td>\n",
              "      <td>non vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Goa</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>212</th>\n",
              "      <td>Lilva Kachori</td>\n",
              "      <td>Green garlic chutney, fresh green peas, ginger...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>30</td>\n",
              "      <td>6</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>213</th>\n",
              "      <td>Mag Dhokli</td>\n",
              "      <td>Moong beans, jaggery, red chillies, oil, salt</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>-1</td>\n",
              "      <td>-1</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>214</th>\n",
              "      <td>Khichu</td>\n",
              "      <td>Rice flour, sesame seeds, baking soda, peanut oil</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>5</td>\n",
              "      <td>10</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>215</th>\n",
              "      <td>Thepla</td>\n",
              "      <td>Chickpea flour, methi leaves, jowar flour, whe...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>15</td>\n",
              "      <td>30</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>217</th>\n",
              "      <td>Khaman</td>\n",
              "      <td>Yogurt, fresh coconut, sesame seeds, semolina,...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>10</td>\n",
              "      <td>20</td>\n",
              "      <td>spicy</td>\n",
              "      <td>snack</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>218</th>\n",
              "      <td>Turiya Patra Vatana sabji</td>\n",
              "      <td>Ridge gourd, baking soda, sugar, grated coconu...</td>\n",
              "      <td>vegetarian</td>\n",
              "      <td>35</td>\n",
              "      <td>40</td>\n",
              "      <td>spicy</td>\n",
              "      <td>main course</td>\n",
              "      <td>Gujarat</td>\n",
              "      <td>West</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                          name  ... region\n",
              "83           Daal baati churma  ...   West\n",
              "88                        Poha  ...   West\n",
              "113                     Pattor  ...   West\n",
              "165                       Amti  ...   West\n",
              "166                      Zunka  ...   West\n",
              "167                Kolim Jawla  ...   West\n",
              "168                      Saath  ...   West\n",
              "169             Bajri no rotlo  ...   West\n",
              "172                 Bombil fry  ...   West\n",
              "173                    Chakali  ...   West\n",
              "174                     Chevdo  ...   West\n",
              "175                  Chorafali  ...   West\n",
              "177                Daal Dhokli  ...   West\n",
              "178              Kutchi dabeli  ...   West\n",
              "181                     Dhokla  ...   West\n",
              "183                Gatta curry  ...   West\n",
              "185                   Ghooghra  ...   West\n",
              "186                     Handwo  ...   West\n",
              "188                 Jeera Aloo  ...   West\n",
              "191                    Khakhra  ...   West\n",
              "192                    Khandvi  ...   West\n",
              "193                Kombdi vade  ...   West\n",
              "195                  Koshimbir  ...   West\n",
              "199                      Patra  ...   West\n",
              "200                  Pav Bhaji  ...   West\n",
              "201                 Puri Bhaji  ...   West\n",
              "202          Sabudana Khichadi  ...   West\n",
              "203                Sev khamani  ...   West\n",
              "204                 Sev tameta  ...   West\n",
              "205                  Namakpara  ...   West\n",
              "207                    Surnoli  ...   West\n",
              "208                 Thalipeeth  ...   West\n",
              "209                    Undhiyu  ...   West\n",
              "210              Veg Kolhapuri  ...   West\n",
              "211                   Vindaloo  ...   West\n",
              "212              Lilva Kachori  ...   West\n",
              "213                 Mag Dhokli  ...   West\n",
              "214                     Khichu  ...   West\n",
              "215                     Thepla  ...   West\n",
              "217                     Khaman  ...   West\n",
              "218  Turiya Patra Vatana sabji  ...   West\n",
              "\n",
              "[41 rows x 9 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 65
        }
      ]
    }
  ]
}