Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
eds_22_23
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Lucas
eds_22_23
Commits
181c8beb
Commit
181c8beb
authored
2 years ago
by
Antoine Lucas
⛷️
Browse files
Options
Downloads
Patches
Plain Diff
Delete 3dlidar_classif.py
parent
4b8077e1
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Labs/Lab_3_LiDAR_ML_Segmentation/3dlidar_classif.py
+0
-336
0 additions, 336 deletions
Labs/Lab_3_LiDAR_ML_Segmentation/3dlidar_classif.py
with
0 additions
and
336 deletions
Labs/Lab_3_LiDAR_ML_Segmentation/3dlidar_classif.py
deleted
100644 → 0
+
0
−
336
View file @
4b8077e1
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 15 22:19:54 2021
@author: alucas
"""
import
numpy
as
np
from
numpy
import
savetxt
from
scipy
import
spatial
from
scipy
import
spatial
from
scipy.stats
import
gaussian_kde
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
matplotlib.tri
as
tri
from
matplotlib.colors
import
ListedColormap
from
mpl_toolkits.mplot3d
import
Axes3D
import
seaborn
as
sns
from
sklearn.decomposition
import
PCA
from
sklearn.model_selection
import
train_test_split
from
sklearn.tree
import
DecisionTreeClassifier
from
sklearn.metrics
import
confusion_matrix
from
sklearn.metrics
import
pairwise_distances
def
readData
(
filename
):
"""
Function to read the landscape data
INPUT:
------
@filename: string
OUTPUT:
-------
x, y, z: numpy arrays
"""
import
numpy
as
np
import
os
if
os
.
path
.
isfile
(
filename
):
f
=
open
(
filename
)
floor
=
np
.
genfromtxt
(
filename
)
x
=
floor
[:,
0
]
y
=
floor
[:,
1
]
z
=
floor
[:,
2
]
f
.
close
()
return
x
,
y
,
z
else
:
print
(
f
'
File
{
filename
}
is not accessible
'
)
def
plot_figs
(
fig_num
,
elev
,
azim
,
dx
,
dy
,
dz
,
density
=
1
):
"""
Draw (x, y z) coordinates into a 3 dimensional scatter plot.
INPUT:
------
@fig_num: int - Figure number
@elev : float - Elevation
@azim : float - Azimuth
@dx, @dy, dz : numpy arrays - data to plot
@density: int - optionnal - factor to decimate the data on plot
OUTPUT:
-------
None
"""
# Subsample input data
X
=
dx
[::
density
]
Y
=
dy
[::
density
]
Z
=
dz
[::
density
]
# Plot the data in 3D
fig
=
plt
.
figure
(
figsize
=
(
10
,
8
))
plt
.
clf
()
ax
=
Axes3D
(
fig
,
rect
=
[
0
,
0
,
.
95
,
1
],
elev
=
elev
,
azim
=
azim
)
ax
.
scatter
(
dx
[::
density
],
dy
[::
density
],
dz
[::
density
],
c
=
dz
[::
density
],
marker
=
'
+
'
,
alpha
=
.
4
)
# OPTIONNAL - BUT NICE TO IMPROVE YOUR POINT OF VIEW
# Create a blanck cubic bounding box to simulate equal aspect ratio in 3D plots
max_range
=
np
.
array
([
X
.
max
()
-
X
.
min
(),
Y
.
max
()
-
Y
.
min
(),
Z
.
max
()
-
Z
.
min
()]).
max
()
Xb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
0
].
flatten
()
+
0.5
*
(
X
.
max
()
+
X
.
min
())
Yb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
1
].
flatten
()
+
0.5
*
(
Y
.
max
()
+
Y
.
min
())
Zb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
2
].
flatten
()
+
0.5
*
(
Z
.
max
()
+
Z
.
min
())
for
xb
,
yb
,
zb
in
zip
(
Xb
,
Yb
,
Zb
):
ax
.
plot
([
xb
],
[
yb
],
[
zb
],
'
w
'
)
plt
.
show
()
def
getEigenvaluePCA
(
a
,
b
,
c
,
dim
,
decim
=
1
):
"""
Function to estimate the eigenvalues of the PCA
INPUT:
------
@a, @b, @c: numpy arrays with the coordinates
@dim : float - diameter of interest of the neighborhood ball
decim : integer - decimation factor to lower the time processing.
"""
print
(
'
Data are decimed by a factor of
'
,
decim
)
ddComp
=
[]
Y
=
np
.
c_
[
a
[::
decim
],
b
[::
decim
],
c
[::
decim
]]
#data = Y.copy()
Y
=
np
.
float32
(
Y
)
#dist = np.float32(spatial.distance.pdist(Y))
dist
=
spatial
.
distance
.
squareform
(
spatial
.
distance
.
pdist
(
Y
))
a
-=
np
.
mean
(
a
,
axis
=
0
)
b
-=
np
.
mean
(
b
,
axis
=
0
)
c
-=
np
.
mean
(
c
,
axis
=
0
)
##Y = np.c_[a[::decim], b[::decim], c[::decim]] <<<--- pourquoi une nouvelle fois le decim' ? on ne devrait pas
n_samples
=
Y
.
shape
[
0
]
feat
=
[]
print
(
'
Treating distance of
'
,
dim
,
'
m
'
)
feat
=
[]
comp
=
[]
# Loop over every points
for
kk
in
range
(
0
,
n_samples
):
pts
=
np
.
where
((
dist
[
kk
,:]
<=
dim
/
2
))
if
np
.
size
(
pts
)
<
2
:
print
(
"
Revise dims
"
)
print
(
pts
)
print
(
dist
)
Ytmp
=
Y
[
pts
,:]
Ytmp
=
Ytmp
[
0
,:,:]
pca
=
PCA
(
n_components
=
3
)
pca
.
fit
(
Ytmp
)
eigenvalues
=
pca
.
explained_variance_ratio_
comp
.
append
(
np
.
array
(
eigenvalues
))
comp
=
np
.
array
(
comp
)
return
comp
,
Y
def
estimateTernaryCoord
(
comp
):
"""
Function which estimate the ternary coordinates
from the list of eigenvalues.
----
INPUT:
@comp: np array - list of eigenvalue for every
points with a given dimension
OUTPUT:
-------
@x_ter, @y_ter, @z_ter
"""
# Conversion towards a,b,c space
ct
=
3
*
comp
[:,
2
]
xp1p2
=
(
1
-
(
comp
[:,
1
]
-
comp
[:,
0
]))
/
2
yp1p2
=
1
-
xp1p2
dS2
=
np
.
sqrt
((.
5
-
xp1p2
)
**
2
+
(.
5
-
yp1p2
)
**
2
)
at
=
(
1
-
ct
)
*
dS2
/
(
np
.
sqrt
((
0.5
-
1
)
**
2
+
(
0.5
-
0
)
**
2
))
bt
=
1
-
(
ct
+
at
)
v
=
(
at
+
bt
+
ct
)
# Conversion towards ternary graph
x_ter
=
.
5
*
(
2.
*
bt
+
ct
)
/
v
y_ter
=
0.5
*
np
.
sqrt
(
3
)
*
ct
/
v
# Compute density for clarity
xy
=
np
.
vstack
([
x_ter
,
y_ter
])
z_ter
=
gaussian_kde
(
xy
)(
xy
)
return
x_ter
,
y_ter
,
z_ter
def
plot_3dcladd
(
dx
,
dy
,
dz
,
y
,
density
=
1
):
X
=
dx
[::
density
]
Y
=
dy
[::
density
]
Z
=
dz
[::
density
]
elev
=
36
azim
=
-
144
# Plot the data in 3D
fig
=
plt
.
figure
(
figsize
=
(
10
,
8
))
plt
.
clf
()
ax
=
Axes3D
(
fig
,
rect
=
[
0
,
0
,
.
95
,
1
],
elev
=
elev
,
azim
=
azim
)
ax
.
scatter
(
dx
[::
density
],
dy
[::
density
],
dz
[::
density
],
c
=
y
,
marker
=
'
.
'
,
alpha
=
.
5
,
cmap
=
'
YlGn
'
)
# OPTIONNAL - BUT NICE TO IMPROVE YOUR POINT OF VIEW
# Create a blanck cubic bounding box to simulate equal aspect ratio in 3D plots
max_range
=
np
.
array
([
X
.
max
()
-
X
.
min
(),
Y
.
max
()
-
Y
.
min
(),
Z
.
max
()
-
Z
.
min
()]).
max
()
Xb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
0
].
flatten
()
+
0.5
*
(
X
.
max
()
+
X
.
min
())
Yb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
1
].
flatten
()
+
0.5
*
(
Y
.
max
()
+
Y
.
min
())
Zb
=
0.5
*
max_range
*
np
.
mgrid
[
-
1
:
2
:
2
,
-
1
:
2
:
2
,
-
1
:
2
:
2
][
2
].
flatten
()
+
0.5
*
(
Z
.
max
()
+
Z
.
min
())
for
xb
,
yb
,
zb
in
zip
(
Xb
,
Yb
,
Zb
):
ax
.
plot
([
xb
],
[
yb
],
[
zb
],
'
w
'
)
plt
.
show
()
workingdir
=
'
./LiDARDunes/training/
'
filename
=
workingdir
+
'
floor.xyz
'
dx1
,
dy1
,
dz1
=
readData
(
filename
)
dims
=
[
0.1
,
0.3
]
floor
=
pd
.
DataFrame
()
for
dim
in
dims
:
eigv
,
Y1
=
getEigenvaluePCA
(
dx1
,
dy1
,
dz1
,
dim
,
decim
=
5
)
x_ter
,
y_ter
,
z_ter
=
estimateTernaryCoord
(
eigv
)
data_dim
=
pd
.
DataFrame
({
'
x_ter_
'
+
str
(
dim
):
x_ter
,
'
y_ter_
'
+
str
(
dim
):
y_ter
,
'
z_ter_
'
+
str
(
dim
):
z_ter
})
floor
=
pd
.
concat
([
floor
,
data_dim
],
axis
=
1
)
title
=
"
Components at
"
+
str
(
dim
)
+
"
m
"
##plotTernary(x_ter, y_ter, z_ter, title)
floor
[
"
class
"
]
=
1
del
dx1
,
dy1
,
dz1
workingdir
=
'
./LiDARDunes/training/
'
filename
=
workingdir
+
'
vegetation.xyz
'
dx
,
dy
,
dz
=
readData
(
filename
)
# All together
dims
=
[
0.1
,
0.3
]
veget
=
pd
.
DataFrame
()
for
dim
in
dims
:
eigv
,
Y2
=
getEigenvaluePCA
(
dx
,
dy
,
dz
,
dim
,
decim
=
5
)
x_ter
,
y_ter
,
z_ter
=
estimateTernaryCoord
(
eigv
)
data_dim
=
pd
.
DataFrame
({
'
x_ter_
'
+
str
(
dim
):
x_ter
,
'
y_ter_
'
+
str
(
dim
):
y_ter
,
'
z_ter_
'
+
str
(
dim
):
z_ter
})
veget
=
pd
.
concat
([
veget
,
data_dim
],
axis
=
1
)
title
=
"
Components at
"
+
str
(
dim
)
+
"
m
"
#plotTernary(x_ter, y_ter, z_ter, title)
veget
[
"
class
"
]
=
2
del
dx
,
dy
,
dz
,
data_dim
,
eigv
,
x_ter
,
y_ter
,
z_ter
data
=
pd
.
DataFrame
()
data
=
pd
.
concat
([
veget
,
floor
])
del
veget
,
floor
#X = data.drop("class", axis=1)
X
=
data
.
drop
({
"
z_ter_0.1
"
,
"
z_ter_0.3
"
,
"
class
"
},
axis
=
1
)
y
=
data
[
"
class
"
].
copy
()
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.25
,
random_state
=
42
)
from
sklearn.discriminant_analysis
import
LinearDiscriminantAnalysis
#from sklearn.metrics import plot_confusion_matrix
ClaName
=
"
LDA
"
lda
=
LinearDiscriminantAnalysis
(
store_covariance
=
True
)
lda
.
fit
(
X_train
,
y_train
)
y_pred_dt
=
lda
.
predict
(
X_test
)
cnf_matrix
=
confusion_matrix
(
y_test
,
y_pred_dt
)
#plot_confMat(cnf_matrix,ClaName)
y_pred_lda
=
lda
.
predict
(
X_test
)
y_pred_all
=
lda
.
predict
(
X
)
y_pred_train
=
lda
.
predict
(
X_train
)
y_pred
=
lda
.
fit
(
X
,
y
.
ravel
()).
predict
(
X
)
print
(
"
Classifier: Decision Tree
"
)
print
(
"
Accuracy on the train data: {:.2f}
"
.
format
(
lda
.
score
(
X_train
,
y_pred_train
)
*
100
)
+
"
%
"
)
print
(
"
Accuracy on test data: {:.2f}
"
.
format
(
lda
.
score
(
X_test
,
y_pred_lda
)
*
100
)
+
"
%
"
)
print
(
"
Accuracy on the whole data: {:.2f}
"
.
format
(
lda
.
score
(
X
,
y_pred_all
)
*
100
)
+
"
%
"
)
print
(
"
"
)
y_scene
=
lda
.
predict
(
X
)
Y
=
np
.
concatenate
((
Y2
,
Y1
))
del
Y1
,
Y2
#dy = np.concatenate((dy1, dy))
#dz = np.concatenate((dz1, dz))
plot_3dcladd
(
Y
[:,
0
],
Y
[:,
1
],
Y
[:,
2
],
y_scene
,
density
=
1
)
####
workingdir
=
'
./LiDARDunes/data/
'
filename
=
workingdir
+
'
scene2.xyz
'
dx
,
dy
,
dz
=
readData
(
filename
)
#Y = np.c_[dx[::5],dy[::5],dz[::5]]
#dist = pairwise_distances(Y)
# # All together
dims
=
[
0.1
,
0.3
]
scene
=
pd
.
DataFrame
()
for
dim
in
dims
:
eigv
,
YY
=
getEigenvaluePCA
(
dx
,
dy
,
dz
,
dim
,
decim
=
5
)
x_ter
,
y_ter
,
z_ter
=
estimateTernaryCoord
(
eigv
)
data_dim
=
pd
.
DataFrame
({
'
x_ter_
'
+
str
(
dim
):
x_ter
,
'
y_ter_
'
+
str
(
dim
):
y_ter
,
'
z_ter_
'
+
str
(
dim
):
z_ter
})
scene
=
pd
.
concat
([
scene
,
data_dim
],
axis
=
1
)
# title = "Components at "+str(dim)+" m"
# #plotTernary(x_ter, y_ter, z_ter, title)
# y_scene = lda.predict(scene)
# plot_3dcladd(YY[:,0],YY[:,1],YY[:,2],y_scene,density=1)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment