Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
eds_22_23
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Antoine Lucas
eds_22_23
Commits
74a4732e
Commit
74a4732e
authored
2 years ago
by
Antoine Lucas
⛷️
Browse files
Options
Downloads
Patches
Plain Diff
Replace libLab3_Lidar.py
parent
98c6e5df
Branches
main
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Labs/Lab_3_LiDAR_ML_Segmentation/libLab3_Lidar.py
+47
-24
47 additions, 24 deletions
Labs/Lab_3_LiDAR_ML_Segmentation/libLab3_Lidar.py
with
47 additions
and
24 deletions
Labs/Lab_3_LiDAR_ML_Segmentation/libLab3_Lidar.py
+
47
−
24
View file @
74a4732e
...
@@ -418,13 +418,15 @@ def plot_contours_compare(X, y, X_train , y_train, X_test, y_test, classifiers,
...
@@ -418,13 +418,15 @@ def plot_contours_compare(X, y, X_train , y_train, X_test, y_test, classifiers,
###
###
def
plot_contours
(
X
,
y
,
classifier
,
resolution
=
0.02
):
def
plot_contours
(
X
,
y
,
classifier
,
resolution
=
0.02
,
level
=
50
):
"""
"""
Function to plot single classifier contours
Function to plot single classifier contours
----
----
INPUT:
INPUT:
@X: Numpy array with data
@X: Numpy array with data
, e.g. X.to_numpy()
@y: Numpy array with labels
@y: Numpy array with labels
@resolution: resolution of the contour plot
@level: depth of the intersection of hyperplanes
----
----
OUTPUT:
OUTPUT:
...
@@ -445,26 +447,48 @@ def plot_contours(X, y, classifier, resolution=0.02):
...
@@ -445,26 +447,48 @@ def plot_contours(X, y, classifier, resolution=0.02):
from
matplotlib
import
colors
from
matplotlib
import
colors
# setup marker generator and color map
# setup marker generator and color map
markers
=
(
'
s
'
,
'
x
'
,
'
o
'
,
'
^
'
,
'
v
'
)
# markers = ('s', 'x', 'o', '^', 'v')
colors
=
(
'
red
'
,
'
blue
'
,
'
lightgreen
'
,
'
gray
'
,
'
cyan
'
)
# colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap
=
ListedColormap
(
colors
[:
len
(
np
.
unique
(
y
))])
# cmap = ListedColormap(colors[:len(np.unique(y))])
C
=
X
[:,
0
:
2
]
# C = X[:, 0:2]
# plot the decision surface
# # plot the decision surface
x1_min
,
x1_max
=
C
[:,
0
].
min
()
-
1
,
C
[:,
0
].
max
()
+
1
# x1_min, x1_max = C[:, 0].min() - 1, C[:, 0].max() + 1
x2_min
,
x2_max
=
C
[:,
1
].
min
()
-
1
,
C
[:,
1
].
max
()
+
1
# x2_min, x2_max = C[:, 1].min() - 1, C[:, 1].max() + 1
xx1
,
xx2
=
np
.
meshgrid
(
np
.
arange
(
x1_min
,
x1_max
,
resolution
),
# xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np
.
arange
(
x2_min
,
x2_max
,
resolution
))
# np.arange(x2_min, x2_max, resolution))
Z
=
classifier
.
predict
(
np
.
array
([
xx1
.
ravel
(),
xx2
.
ravel
()]).
T
)
# Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z
=
Z
.
reshape
(
xx1
.
shape
)
# Z = Z.reshape(xx1.shape)
plt
.
contourf
(
xx1
,
xx2
,
Z
,
alpha
=
0.4
,
cmap
=
cmap
)
# plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt
.
xlim
(
xx1
.
min
(),
xx1
.
max
())
# plt.xlim(xx1.min(), xx1.max())
plt
.
ylim
(
xx2
.
min
(),
xx2
.
max
())
# plt.ylim(xx2.min(), xx2.max())
for
idx
,
cl
in
enumerate
(
np
.
unique
(
y
)):
# for idx, cl in enumerate(np.unique(y)):
plt
.
scatter
(
x
=
C
[
y
==
cl
,
0
],
y
=
C
[
y
==
cl
,
1
],
# plt.scatter(x=C[y == cl, 0], y=C[y == cl, 1],
alpha
=
0.8
,
c
=
cmap
(
idx
),
# alpha=0.8, c=cmap(idx),
marker
=
markers
[
idx
],
label
=
cl
)
# marker=markers[idx], label=cl)
x_values
=
np
.
linspace
(
0
,
1
,
np
.
int32
(
1
/
resolution
))
x_mesh
=
np
.
meshgrid
(
x_values
,
x_values
)
x_plane
=
np
.
array
([
x
.
ravel
()
for
x
in
x_mesh
])
x_projection
=
level
*
X
[:,
3
].
mean
()
*
x_plane
x_input
=
np
.
vstack
((
x_plane
,
x_projection
))
y_boundary
=
classifier
.
predict
(
x_input
.
T
)
plt
.
figure
()
plt
.
contourf
(
x_mesh
[
0
],
x_mesh
[
1
],
y_boundary
.
reshape
(
x_mesh
[
0
].
shape
),
levels
=
[
0.5
,
1.5
,
2.5
],
zorder
=
0
,
)
plt
.
scatter
(
X
[:,
0
],
X
[:,
1
],
c
=
y
,
cmap
=
"
tab20
"
,
zorder
=
2
,
)
def
plot_3dcladd
(
dx
,
dy
,
dz
,
y
,
density
=
1
):
def
plot_3dcladd
(
dx
,
dy
,
dz
,
y
,
density
=
1
):
...
@@ -516,5 +540,4 @@ def plot_confMat(cnf_matrix,ClaName):
...
@@ -516,5 +540,4 @@ def plot_confMat(cnf_matrix,ClaName):
plt
.
title
(
"
Confusion matrix using
"
+
ClaName
,
y
=
1.1
);
plt
.
title
(
"
Confusion matrix using
"
+
ClaName
,
y
=
1.1
);
plt
.
ylabel
(
'
Actual label
'
);
plt
.
ylabel
(
'
Actual label
'
);
plt
.
xlabel
(
'
Predicted label
'
);
plt
.
xlabel
(
'
Predicted label
'
);
plt
.
show
()
plt
.
show
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment